• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    System requirements and optimization of multi-chillers district cooling plants

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2022
    Author
    Ismaen, Rabah
    El Mekkawy, Tarek Y.
    Pokharel, Shaligram
    Al-Salem, Mohammed
    Metadata
    Show full item record
    Abstract
    District cooling systems (DCS) are particularly important in the Middle East due to higher overall temperatures on most days of the year. The design, operation, and control of a new DCS should consider the abundant stakeholders and system requirements transformation using the system engineering processes. Integrating these requirements at an early stage in the system model is essential, specifically, the regulation on energy efficiency or system reliability; without such integration, the system may miss some important aspects and lead to higher energy consumption, lower reliability, higher system cost, greater CO2 emissions and may not satisfy cooling demand of the stakeholders. In this paper, a framework for DCS analysis is proposed by considering inputs, process (core), and outputs. The framework considers the structure and behavior of the DCS system to enhance system design and operation. The core of the framework uses a mathematical model in mixed-integer linear programming (MILP) to optimize the overall DCS cost by integrating the system and stakeholders' requirements. The results obtained from the application of the framework show that addressing the requirements reduces cost and increases energy efficiency, and when the cooling demand is variable, it might be better to have multiple capacities for chillers and chiller storage. The paper is helpful for the decision-makers to understand the impact of requirements and their management in the design, operation, and control of multi-chiller DCS in relief with the cost and energy efficiency. 2022 Elsevier Ltd
    DOI/handle
    http://dx.doi.org/10.1016/j.energy.2022.123349
    http://hdl.handle.net/10576/36699
    Collections
    • Mechanical & Industrial Engineering [‎1460‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video