• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Differentially Private Big Data Nonparametric Bayesian Clustering Algorithm in Smart Grid

    Thumbnail
    Date
    2020-10-01
    Author
    Guan, Zhitao
    Lv, Zefang
    Sun, Xianwen
    Wu, Longfei
    Wu, Jun
    Du, Xiaojiang
    Guizani, Mohsen
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Smart systems, including smart grid (SG) and Internet of Things (IoT), have been playing a critical role in addressing contemporary issues. Taking full advantage of the big data generated by the smart grid can enhance the system stability and reliability, increase asset utilization, and offer better customer experience. To better support the data-driven smart grid, the machine learning technologies such as cluster analysis can be applied to process the massive data generated in smart grid. However, the process of cluster analysis may cause the disclosure of personal private information. In this paper, to achieve privacy-preserving cluster analysis in smart grid, we propose IDPC, a Differentially Private Clustering algorithm based on the Infinite Gaussian mixture model (IGMM). IDPC uses a combination of nonparametric Bayesian method and differential privacy. The nonparametric Bayesian method allows certain parameters to change along with the data and it is usually adopted in a clustering algorithm without a fixed number of clusters. The Laplace mechanism is used in data releasing process to make IDPC differentially private. We present how to make the nonparametric Bayesian clustering algorithm differentially private by adding Laplace noise. By security analysis and performance evaluation, IDPC is proved to be privacy-preserving as well as efficient.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85083458874&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TNSE.2020.2985096
    http://hdl.handle.net/10576/36721
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video