• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Malware detection based on graph attention networks for intelligent transportation systems

    Thumbnail
    View/Open
    electronics-10-02534-v2.pdf (344.8Kb)
    Date
    2021
    Author
    Catal, Cagatay
    Gunduz, Hakan
    Ozcan, Alper
    Metadata
    Show full item record
    Abstract
    Intelligent Transportation Systems (ITS) aim to make transportation smarter, safer, reliable, and environmentally friendly without detrimentally affecting the service quality. ITS can face security issues due to their complex, dynamic, and non-linear properties. One of the most critical security problems is attacks that damage the infrastructure of the entire ITS. Attackers can inject malware code that triggers dangerous actions such as information theft and unwanted system moves. The main objective of this study is to improve the performance of malware detection models using Graph Attention Networks. To detect malware attacks addressing ITS, a Graph Attention Network (GAN)-based framework is proposed in this study. The inputs to this framework are the Application Programming Interface (API)-call graphs obtained from malware and benign Android apk files. During the graph creation, network metrics and the Node2Vec model are utilized to generate the node features. A GAN-based model is combined with different types of node features during the experiments and the performance is compared against Graph Convolutional Network (GCN). Experimental results demonstrated that the integration of the GAN and Node2Vec models provides the best performance in terms of F-measure and accuracy parameters and, also, the use of an attention mechanism in GAN improves the performance. Furthermore, node features generated with Node2Vec resulted in a 3% increase in classification accuracy compared to the features generated with network metrics. 2021 by the authors. Licensee MDPI, Basel, Switzerland.
    DOI/handle
    http://dx.doi.org/10.3390/electronics10202534
    http://hdl.handle.net/10576/36778
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video