• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    ADS-B Attack Classification using Machine Learning Techniques

    Thumbnail
    Date
    2021
    Author
    Kacem, Thabet
    Kaya, Aydin
    Seydi Keceli, Ali
    Catal, Cagatay
    Wijsekera, Duminda
    Costa, Paulo
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Automatic Dependent Surveillance Broadcast (ADS-B) is one of the most prominent protocols in Air Traffic Control (ATC). Its key advantages derive from using GPS as a location provider, resulting in better location accuracy while offering substantially lower deployment and operational costs when compared to traditional radar technologies. ADS-B not only can enhance radar coverage but also is a standalone solution to areas without radar coverage. Despite these advantages, a wider adoption of the technology is limited due to security vulnerabilities, which are rooted in the protocol's open broadcast of clear-text messages. In spite of the seriousness of such concerns, very few researchers attempted to propose viable approaches to address such vulnerabilities. In addition to the importance of detecting ADS-B attacks, classifying these attacks is as important since it will enable the security experts and ATC controllers to better understand the attack vector thus enhancing the future protection mechanisms. Unfortunately, there have been very little research on automatically classifying ADS-B attacks. Even the few approaches that attempted to do so considered just two classification categories, i.e. malicious message vs not malicious message. In this paper, we propose a new module to our ADS-Bsec framework capable of classifying ADS-B attacks using advanced machine learning techniques including Support Vector Machines (SVM), Decision Tree, and Random Forest (RF). Our module has the advantage that it adopts a multi-class classification approach based on the nature of the ADS-B attacks not just the traditional 2category classifiers. To illustrate and evaluate our ideas, we designed several experiments using a flight dataset from Lisbon to Paris that includes ADS-B attacks from three categories. Our experimental results demonstrated that machine learningbased models provide high performance in terms of accuracy, sensitivity, and specificity metrics. 2021 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/IVWorkshops54471.2021.9669212
    http://hdl.handle.net/10576/36789
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video