• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Predicting Plasma Vitamin C Using Machine Learning

    Thumbnail
    View/Open
    Predicting Plasma Vitamin C Using Machine Learning.pdf (4.164Mb)
    Date
    2022
    Author
    Kirk, Daniel
    Catal, Cagatay
    Tekinerdogan, Bedir
    Metadata
    Show full item record
    Abstract
    Precision Nutrition makes use of personal information about individuals to produce nutritional recommendations that have more utility than general population level recommendations. In many cases, being able to predict current status is a necessary first step in offering tailored nutritional advice. The objective of this study is to predict plasma vitamin C using machine learning. The NHANES dataset was used to predict plasma vitamin C in a cohort of 2952 American adults using regression algorithms and clustering in a way that a hypothetical health application might. Variables were selected based on a known or hypothesized relationship with plasma vitamin C, and variables that are expensive or difficult to obtain were excluded in order to more closely replicate the situation of a real health application. The best performance was seen with the XGBoost regressor, with random forest performing almost identically. Clustering was also investigated as a means of improving regression accuracy by splitting the data up into smaller yet more homogeneous groups, however, this was not successful. The low R-squared scores obtained by the models are likely to be due to the low resolution of the NHANES data, particularly the dietary data. This emphasizes the need for high-quality data sets in Precision Nutrition research. 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.
    DOI/handle
    http://dx.doi.org/10.1080/08839514.2022.2042924
    http://hdl.handle.net/10576/36794
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video