• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A hybrid DNN-LSTM model for detecting phishing URLs

    Thumbnail
    View/Open
    s00521-021-06401-z.pdf (1017.Kb)
    Date
    2021
    Author
    Ozcan, Alper
    Catal, Cagatay
    Donmez, Emrah
    Senturk, Behcet
    Metadata
    Show full item record
    Abstract
    Phishing is an attack targeting to imitate the official websites of corporations such as banks, e-commerce, financial institutions, and governmental institutions. Phishing websites aim to access and retrieve users' important information such as personal identification, social security number, password, e-mail, credit card, and other account information. Several anti-phishing techniques have been developed to cope with the increasing number of phishing attacks so far. Machine learning and particularly, deep learning algorithms are nowadays the most crucial techniques used to detect and prevent phishing attacks because of their strong learning abilities on massive datasets and their state-of-the-art results in many classification problems. Previously, two types of feature extraction techniques [i.e., character embedding-based and manual natural language processing (NLP) feature extraction] were used in isolation. However, researchers did not consolidate these features and therefore, the performance was not remarkable. Unlike previous works, our study presented an approach that utilizes both feature extraction techniques. We discussed how to combine these feature extraction techniques to fully utilize from the available data. This paper proposes hybrid deep learning models based on long short-term memory and deep neural network algorithms for detecting phishing uniform resource locator and evaluates the performance of the models on phishing datasets. The proposed hybrid deep learning models utilize both character embedding and NLP features, thereby simultaneously exploiting deep connections between characters and revealing NLP-based high-level connections. Experimental results showed that the proposed models achieve superior performance than the other phishing detection models in terms of accuracy metric. 2021, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.
    DOI/handle
    http://dx.doi.org/10.1007/s00521-021-06401-z
    http://hdl.handle.net/10576/36802
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video