• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Distributed Deep Learning System for Web Attack Detection on Edge Devices

    Thumbnail
    Date
    2020-03-01
    Author
    Tian, Zhihong
    Luo, Chaochao
    Qiu, Jing
    Du, Xiaojiang
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    With the development of Internet of Things (IoT) and cloud technologies, numerous IoT devices and sensors transmit huge amounts of data to cloud data centers for further processing. While providing us considerable convenience, cloud-based computing and storage also bring us many security problems, such as the abuse of information collection and concentrated web servers in the cloud. Traditional intrusion detection systems and web application firewalls are becoming incompatible with the new network environment, and related systems with machine learning or deep learning are emerging. However, cloud-IoT systems increase attacks against web servers, since data centralization carries a more attractive reward. In this article, based on distributed deep learning, we propose a web attack detection system that takes advantage of analyzing URLs. The system is designed to detect web attacks and is deployed on edge devices. The cloud handles the above challenges in the paradigm of the Edge of Things. Multiple concurrent deep models are used to enhance the stability of the system and the convenience in updating. We implemented experiments on the system with two concurrent deep models and compared the system with existing systems by using several datasets. The experimental results with 99.410% in accuracy, 98.91% in true positive rate (TPR), and 99.55% in detection rate of normal requests (DRN) demonstrate the system is competitive in detecting web attacks.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85078480541&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TII.2019.2938778
    http://hdl.handle.net/10576/37266
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video