• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sanitation and dewatering of human urine via membrane bioreactor and membrane distillation and its reuse for fertigation

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0959652620324379-main.pdf (3.702Mb)
    Date
    2020-06-05
    Author
    Federico, Volpin
    Jiang, Jiaxi
    El Saliby, Ibrahim
    Preire, Mathilde
    Lim, Sungil
    Hasan Johir, Md Abu
    Cho, Jaeweon
    Han, Dong Suk
    Phuntsho, Sherub
    Shon, Ho Kyong
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Source separation and recovery of human urine have often been proposed as an effective way to achieve a more sustainable waste-to-resource cycle. Its high density of available macronutrients (N–P–K) in urine makes it an ideal raw material for the production of fertiliser. However, to improve the safety and public acceptance of urine-based fertilisers, odour and pathogens must be removed. In this work, low-temperature DCMD was investigated a mean to produce a non-odorous high-concentration liquid fertiliser. The effectiveness of urine-fertiliser in hydroponically growing leafy vegetables was benchmarked with a commercial solution. Also, prior to the DCMD, urine was biologically oxidised through an MBR which removed over 95% of the DOC and converted almost 50% of the NH3 into NO3−. The results showed that, despite the high salinity and high LMW organics in human urine, MD was still able to achieve a final product with TDS concentration up to 280 g.L−1. A sharp flux decline was measured after 80% water recovery, but alkaline cleaning effectively removed the thick fouling layer and fully recovered the initial flux. When used to grow lettuce and Pak Choi hydroponically, the produced urine fertiliser achieved promising performances as the biomass from the aerial part of the plants was often similar to the one obtained with commercial fertilisers. Overall, this article investigates the whole urine-to-biomass cycle, from collection to treatment to plant growth tests.
    URI
    https://www.sciencedirect.com/science/article/pii/S0959652620324379
    DOI/handle
    http://dx.doi.org/10.1016/j.jclepro.2020.122390
    http://hdl.handle.net/10576/37392
    Collections
    • Center for Advanced Materials Research [‎1486‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video