• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cooperative Q-learning techniques for distributed online power allocation in femtocell networks

    Thumbnail
    Date
    2015
    Author
    Saad, H.
    Mohamed, A.
    ElBatt, T.
    Metadata
    Show full item record
    Abstract
    In this paper, we address the problem of distributed interference management of femtocells that share the same frequency band with macrocells using distributed multi-agent Q-learning. We formulate and solve two problems representing two different Q-learning algorithms, namely, femto-based distributed and sub-carrier-based distributed power controls using Q-learning (FBDPC-Q and SBDPC-Q). FBDPC-Q is a multi-agent algorithm that works on a global basis, for example, deals with the aggregate macrocell and femtocell capacities. Its complexity increases exponentially with the number of sub-carriers in the system. Also, it does not take into consideration the sub-carrier macrocell capacity as a constraint. To overcome these problems, SBDPC-Q is proposed, which is a multi-agent algorithm that works on a sub-carrier basis, for example, sub-carrier macrocell and femtocell capacities. Each of FBDPC-Q and SBDPC-Q works in three different learning paradigms: independent (IL), cooperative (CL), and weighted cooperative (WCL). IL is considered the simplest form for applying Q-learning in multi-agent scenarios, where all the femtocells learn independently. CL and WCL are the proposed schemes in which femtocells share partial information during the learning process in order to strike a balance between practical relevance and performance. We prove the convergence of the CL paradigm when used in the FBDPC-Q algorithm. We show via simulations that the CL paradigm outperforms the IL paradigm in terms of the aggregate femtocell capacity, especially in networks with large number of femtocells and large number of power levels. In addition, we propose WCL to address the CL limitations. Finally, we evaluate the robustness and scalability of both FBDPC-Q and SBDPC-Q, against several typical dynamics of plausible wireless scenarios (fading, path loss, random activity of femtocells, etc.). We show that the CL paradigm is the most scalable to large number of femtocells and robust to the network dynamics compared with the IL and WCL paradigms.
    DOI/handle
    http://dx.doi.org/10.1002/wcm.2470
    http://hdl.handle.net/10576/3751
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video