• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Machine learning-based multi-target regression to effectively predict turning movements at signalized intersections

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2046043022000193-main.pdf (1.870Mb)
    Date
    2022
    Author
    Shaaban, Khaled
    Hamdi, Ali
    Ghanim, Mohammad
    Shaban, Khaled Bashir
    Metadata
    Show full item record
    Abstract
    Effective prediction of turning movement counts at intersections through efficient and accurate methods is essential and needed for various applications. Commonly predictive methods require extensive data collection, calibration, and modeling efforts to estimate turning movements. In this study, three models were proposed to estimate turning movements at signalized intersections using approach volumes. Two sets of data from the United States and Canada were obtained to develop and test the proposed models. Machine learning-based regression models, including random forest regressor (RFR) and multioutput regressor (MOR) in addition to an artificial neural network (ANN) model, were developed and trained to analyze the relationship between approach volumes and corresponding turning movements. Multiple evaluation measurements were utilized to compare the models. All models produced satisfactory results. The RFR regression model outperformed the MOR model. However, the ANN model had the best performance when compared to the other models. The proposed models provide traffic engineers and planners with reliable and fast methods to estimate turning movements. 2022 Tongji University, Tongji University Press
    DOI/handle
    http://dx.doi.org/10.1016/j.ijtst.2022.02.003
    http://hdl.handle.net/10576/37513
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video