• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effect of rat serum lipoproteins on mRNA levels and amiodarone metabolism by cultured primary rat hepatocytes

    Thumbnail
    Date
    2013
    Author
    Brocks, D. R.
    Hamdy, D. A.
    Ben-Eltriki, M.
    Patel, J. P.
    El-Kadi, A. O.
    Metadata
    Show full item record
    Abstract
    Hyperlipidemia can significantly increase amiodarone (AM) in vivo liver uptake and decrease its velocity of microsomal metabolism. Here, hepatocytes isolated from normolipidemic (NL) and hyperlipidemic rats were incubated with AM in the presence or absence of diluted NL or hyperlipidemic serum. The serum was added either as preincubation before drug, or concurrently with drug; incubations without rat serum were used as controls. The hepatocyte levels of mRNA for several proteins and enzymes were also measured. Disappearance of AM was seen up to 72?h. There was little difference between hepatocytes from NL or hyperlipidemic animals in intrinsic clearance (CLint) of AM. The effect of hyperlipidemic rat serum, either before or with AM, was profound, causing a significant reduction in the CLint. Reductions were seen in mRNA for cytochrome P450 1A1, 3A2, and 2D1, some transporters, and low-density lipoprotein receptors after exposure of hepatocytes to lipoprotein-rich sera. In conclusion, exposure of isolated hepatocytes to hyperlipidemic serum caused decreases in AM CLint and lower mRNA levels for some proteins involved in the uptake and metabolism of AM. When coincubated with serum, an additional effect of increased binding to lipoproteins seemed to further contribute to a reduced CL of AM.
    DOI/handle
    http://dx.doi.org/10.1002/jps.23348
    http://hdl.handle.net/10576/3757
    Collections
    • Pharmacy Research [‎1419‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video