• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar University Young Scientists Center
  • Research of Qatar University Young Scientists Center
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar University Young Scientists Center
  • Research of Qatar University Young Scientists Center
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Numerical modeling and performance optimization of carbon-based hole transport layer free perovskite solar cells

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0925346722001094-main.pdf (5.007Mb)
    Date
    2022-03-31
    Author
    Ehsan, Raza
    Ahmad, Zubair
    Asif, Muhammad
    Aziz, Fakhra
    Riaz, Kashif
    Mehmood, Muhammad Qasim
    Bhadra, Jolly
    Al-Thani, Noora J.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Owing to low production cost and ease of processing, hole-transport layer (HTL) free carbon electrode-based perovskite solar cells (c-PSCs) have emerged as a potential photovoltaic (PV) technology. Despite this, c-PCSs still have to achieve the high photon conversion efficiency exhibited by standard PSCs using HTLs. In the present work, device modeling of Csx(FA0.4MA0.6)1-xPbI2.8Br0.2 based HTL-free c-PSC was presented using the simulation program Solar Cell Capacitance Simulator (SCAPS). Output results were successfully replicated in the simulation that were comparable to experimentally reported values. Furthermore, several parameters affecting device performance, such as the absorber layer, the electron transport layer (ETL), front contact thicknesses, and doping concentrations, are studied and optimized. Additionally, the defect density at the perovskite/ETL interface is investigated. Under optimized conditions, a high open-circuit voltage of 1.13 V, short-circuit current density of 22.54 mA/cm2, fill factor of 79.75%, and photon conversion efficiency of 20.43% is achieved. Results demonstrate the promising features of the proposed HTL-free c-PSC. Lastly, the impact of temperature and work function of back metal contacts were also examined. The simulation results suggest a direction to design low-cost and highly efficient HTL-free c-PSCs.
    URI
    https://www.sciencedirect.com/science/article/pii/S0925346722001094
    DOI/handle
    http://dx.doi.org/10.1016/j.optmat.2022.112075
    http://hdl.handle.net/10576/38357
    Collections
    • Center for Advanced Materials Research [‎1485‎ items ]
    • Research of Qatar University Young Scientists Center [‎213‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video