• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A simulation-optimization approach for the stochastic discrete cost multicommodity flow problem

    Thumbnail
    Date
    2020
    Author
    Mejri, Imen
    Layeb, Safa Bhar
    Haouari, Mohamed
    Mansour, Farah Zeghal
    Metadata
    Show full item record
    Abstract
    This article addresses a variant of the Discrete Cost Multicommodity Flow (DCMF) problem with random demands, where a penalty is incurred for each unrouted demand. The problem requires finding a network topology that minimizes the sum of the fixed installation facility costs and the expected penalties of unmet multicommodity demands. A two-stage stochastic programming with recourse model is proposed. A simulation-optimization approach is developed to solve this challenging problem approximately. To be precise, the first-stage problem requires solving a specific multi-facility network design problem using an exact enhanced cut-generation procedure coupled with a column generation algorithm. The second-stage problem aims at computing the expected penalty using a Monte Carlo simulation procedure together with a hedging strategy. To assess the empirical performance of the proposed approach, a Sample Average Approximation (SAA) procedure is developed to derive valid lower bounds. Results of extensive computational experiments attest to the efficacy of the proposed approach.
    DOI/handle
    http://dx.doi.org/10.1080/0305215X.2019.1603299
    http://hdl.handle.net/10576/38702
    Collections
    • Mechanical & Industrial Engineering [‎1460‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video