• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Combinatorial benders decomposition for the two-dimensional bin packing problem

    Thumbnail
    View/Open
    s41598-021-96057-5.pdf (1.253Mb)
    Date
    2021
    Author
    Côté, Jean-François
    Haouari, Mohamed
    Iori, Manuel
    Metadata
    Show full item record
    Abstract
    The two-dimensional bin packing problem calls for packing a set of rectangular items into a minimal set of larger rectangular bins. Items must be packed with their edges parallel to the borders of the bins, cannot be rotated, and cannot overlap among them. The problem is of interest because it models many real-world applications, including production, warehouse management, and transportation. It is, unfortunately, very difficult, and instances with just 40 items are unsolved to proven optimality, despite many attempts, since the 1990s. In this paper, we solve the problem with a combinatorial Benders decomposition that is based on a simple model in which the two-dimensional items and bins are just represented by their areas, and infeasible packings are imposed by means of exponentially many no-good cuts. The basic decomposition scheme is quite naive, but we enrich it with a number of preprocessing techniques, valid inequalities, lower bounding methods, and enhanced algorithms to produce the strongest possible cuts. The resulting algorithm behaved very well on the benchmark sets of instances, improving on average on previous algorithms from the literature and solving for the first time a number of open instances. Summary of Contribution: We address the two-dimensional bin packing problem (2D-BPP), which calls for packing a set of rectangular items into a minimal set of larger rectangular bins. The 2D-BPP is a very difficult generalization of the standard one-dimensional bin packing problem, and it has been widely studied in the past because it models many real-world applications, including production, warehouse management, and transportation. We solve the 2D-BPP with a combinatorial Benders decomposition that is based on a model in which the two-dimensional items and bins are represented by their areas, and infeasible packings are imposed by means of exponentially many no-good cuts. The basic decomposition scheme is quite naive, but it is enriched with a number of preprocessing techniques, valid inequalities, lower bounding methods, and enhanced algorithms to produce the strongest possible cuts. The algorithm we developed has been extensively tested on the most well-known benchmark set from the literature, which contains 500 instances. It behaved very well, improving on average upon previous algorithms, and solving for the first time a number of open instances. We analyzed in detail several configurations before obtaining the best one and discussed several insights from this analysis in the manuscript. Copyright: 2021 INFORMS
    DOI/handle
    http://dx.doi.org/10.1287/ijoc.2020.1014
    http://hdl.handle.net/10576/38706
    Collections
    • Mechanical & Industrial Engineering [‎1504‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video