• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Influence of electrodeposited Cu-Ni layer on interfacial reaction and mechanical properties of laser welded-brazed Mg/Ti lap joints

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Auwal, S.T.
    Ramesh, S.
    Zhang, Z.
    Liu, J.
    Tan, C.
    Manladan, S.M.
    Yusof, F.
    Tarlochan, F.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    A fiber laser welding-brazing procedure has been developed for joining AZ31B magnesium alloy to Cu-Ni coated Ti-6Al-4V titanium sheet using AZ92D filler wire. The effect of the interlayer arrangements (AZ31B/Ni-Cu/Ti-6Al-4V and AZ31B/Cu-Ni/Ti-6Al-4V) on appearance, interfacial reaction and mechanical properties were investigated at different heat input. It was found that the feasibility of this process depends strongly on the pre-existing Cu-Ni layer on the Ti surface that promotes wetting of the AZ92 filler. Within the range of 1200-1600 W, defect free joints in both interlayer arrangements. Depending on the interlayer arrangements chosen, different reactions layers formed inside the joint region. Nevertheless, at optimum heat input (1400 W), Ti2Ni mingled with Ti3Al interfacial reaction products was produced along the fusion zone (FZ)-Ti brazed interface in both interlayer arrangements. The tensile-shear fracture load of the joints produced at the optimum laser power reached a maximum value of 2016.5 N for AZ31B/Ni-Cu/Ti-6Al-4V and 2014.6 N for AZ31B/Cu-Ni/Ti-6Al-4V, representing an efficiency of 71% compared to AZ31B alloy. Under suitable heat input, the joints failed at the fusion zone of the AZ31B base metal. In contrast, incomplete brazing or large volume of intermetallics at the brazed interface resulted in interfacial failure at lower/higher heat input.
    DOI/handle
    http://dx.doi.org/10.1016/j.jmapro.2018.11.029
    http://hdl.handle.net/10576/38902
    Collections
    • Mechanical & Industrial Engineering [‎1460‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video