• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Second law analysis of compressible flow through a diffuser subjected to constant heat flux at wall

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2010
    Author
    Arshad, Mohammad H.
    Kahraman, Ramazan
    Sahin, Ahmet Z.
    Ben-Mansour, Rached
    Metadata
    Show full item record
    Abstract
    Entropy generation is equivalent to destruction of available work (exergy). The useful energy is destroyed due to the intrinsic irreversibility associated within thermodynamic systems. Exergy analysis can be used as an effective basis for the development and improvement of systems design not only in the overall perspective but also in the individual component level. Second law analysis provides a useful tool to identify the irreversibility in any thermal system. This study presents the investigation of local and total entropy generation in compressible flow through a diffuser. Air is used as the fluid. Uniform heat flux boundary condition is applied at the wall. Two dimensional solution of velocity and temperature fields are obtained using the CFD code FLUENT. Distribution of entropy generation rate is investigated throughout the volume of the fluid as it flows through the diffuser. Regions of high entropy generation in the diffuser have been predicted. The angle of expansion of diffuser is varied and its desire value corresponding to minimum entropy generation is determined at fixed flow conditions.
    DOI/handle
    http://dx.doi.org/10.1016/j.enconman.2010.06.018
    http://hdl.handle.net/10576/3929
    Collections
    • Chemical Engineering [‎1196‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video