• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A decomposition-based hybrid ensemble CNN framework for driver fatigue recognition

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    A decomposition-based hybrid ensemble CNN framework for.pdf (1.766Mb)
    Date
    2023-05-01
    Author
    Li, Ruilin
    Gao, Ruobin
    Suganthan, Ponnuthurai Nagaratnam
    Metadata
    Show full item record
    Abstract
    Electroencephalogram (EEG) has become increasingly popular in driver fatigue monitoring systems. Several decomposition methods have been attempted to analyze the EEG signals that are complex, nonlinear and non-stationary and improve the EEG decoding performance in different applications. However, it remains challenging to extract more distinguishable features from different decomposed components for driver fatigue recognition. In this work, we propose a novel decomposition-based hybrid ensemble convolutional neural network (CNN) framework to enhance the capability of decoding EEG signals. Four decomposition methods are employed to disassemble the EEG signals into components of different complexity. Instead of handcraft features, the CNNs in this framework directly learn from the decomposed components. In addition, a component-specific batch normalization layer is employed to reduce subject variability. Moreover, we employ two ensemble modes to integrate the outputs of all CNNs, comprehensively exploiting the diverse information of the decomposed components. Against the challenging cross-subject driver fatigue recognition task, the models under the framework all showed better performance than the strong baselines. Specifically, the performance of different decomposition methods and ensemble modes was further compared. The results indicated that discrete wavelet transform-based ensemble CNN achieved the highest average classification accuracy of 83.48% among the compared methods. The proposed framework can be extended to any CNN architecture and be applied to any EEG-related tasks, opening the possibility of extracting more beneficial features from complex EEG data.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85146278092&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.ins.2022.12.088
    http://hdl.handle.net/10576/39800
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video