• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Robust Channel Estimation Scheme for 5G Massive MIMO Systems

    Thumbnail
    View/Open
    3469413.pdf (1.535Mb)
    Date
    2019
    Author
    Khan, Imran
    Rodrigues, Joel J. P. C.
    Al-Muhtadi, Jalal
    Khattak, Muhammad Irfan
    Khan, Yousaf
    Altaf, Farhan
    Mirjavadi, Seyed Sajad
    Choi, Bong Jun
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Channel state information (CSI) feedback in massive MIMO systems is too large due to large pilot overhead. It is due to the large channel matrix dimension which depends on the number of base station (BS) antennas and consumes the majority of scarce radio resources. To solve this problem, we proposed a scheme for efficient CSI acquisition and reduced pilot overhead. It is based on the separation mechanism for the channel matrix. The spatial correlation among multiuser channel matrices in the virtual angular domain is utilized to split the channel matrix. Then, the two parts of the matrix are estimated by deploying the compressed sensing (CS) techniques. This scheme is novel in the sense that the user equipment (UE) directly transmits the received symbols from the BS to the BS, so a joint CSI recovery is performed at the BS. Simulation results show that the proposed channel estimation scheme effectively estimates the channel with reduced pilot overhead and improved performance as compared with the state-of-the-art schemes.
    DOI/handle
    http://dx.doi.org/10.1155/2019/3469413
    http://hdl.handle.net/10576/39928
    Collections
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video