• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ab initio molecular dynamics study of the interlayer and micropore structure of aqueous montmorillonite clays

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Version of Record-Open Access (4.360Mb)
    Date
    2015-11
    Author
    Suter, J.L.
    Kabalan, L.
    Khader, M.
    Coveney, P.V.
    Metadata
    Show full item record
    Abstract
    Ab initio molecular dynamics simulations have been performed to gain an understanding of the interfacial microscopic structure and reactivity of fully hydrated clay edges. The models studied include both micropore and interlayer water. We identify acidic sites through dissociation mechanisms; the resulting ions can be stabilized by both micropore and interlayer water. We find clay edges possess a complex amphoteric behavior, which depends on the face under consideration and the location of isomorphic substitution. For the neutral (110) surface, we do not observe any dissociation on the timescale accessible. The edge terminating hydroxyl groups participate in a hydrogen bonded network of water molecules that spans the interlayer between periodic images of the clay framework. With isomorphic substitutions in the tetrahedral layer of the (110) clay edge, we find the adjacent exposed apical oxygen behaves as a Br?nsted base and abstracts a proton from a nearby water molecule, which in turn removes a proton from an AlOH<inf>2</inf> group. With isomorphic substitutions in the octahedral layer of the (110) clay edge the adjacent exposed apical oxygen atom does not abstract a proton from the water molecules, but increases the number of hydrogen bonded water molecules (from one to two). Acid treated clays are likely to have both sites protonated. The (010) surface does not have the same interfacial hydrogen bonding structure; it is much less stable and we observe dissociation of half the terminal SiOH groups (?Si-O-H??SiO-+H+) in our models. The resulting anions are stabilized by solvation from both micropore and interlayer water molecules. This suggests that, when fully hydrated, the (010) surface can act as a Br?nsted acid, even at neutral pH.
    DOI/handle
    http://dx.doi.org/10.1016/j.gca.2015.07.013
    http://hdl.handle.net/10576/4004
    Collections
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video