• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Durability characteristics of high and ultra-high performance concretes

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2352710220311797-main.pdf (7.819Mb)
    Date
    2021
    Author
    Sohail, Muazzam Ghous
    Kahraman, Ramazan
    Al Nuaimi, Nasser
    Gencturk, Bora
    Alnahhal, Wael
    Metadata
    Show full item record
    Abstract
    Durability characteristics of high-performance concrete (HPC) and ultra-high performance concrete (UHPC) are evaluated in comparison to normal strength concrete (NSC). HPC and UHPC are cast using commonly available materials with no special heat treatment. Concrete resistivity, rapid chloride permeability, sorptivity, porosity, and resistance to chloride migration and carbonation of these three types of concrete are assessed. Microstructure and hydration products are investigated using scanning electron microscope (SEM) imaging and X-ray diffraction (XRD) analyses, respectively. Potential enhancement in the service life of reinforced concrete (RC) structures when concrete is replaced with HPC and UHPC is predicted using the time-to-corrosion model. Dense microstructures, high electrical resistance, negligible chloride permeability, low sorptivity, no carbonation ingress are observed in HPC and UHPC. The chloride diffusion coefficient was found to be at least three orders of magnitude lower in UHPC compared to NSC, which could delay the corrosion initiation of steel reinforcement. With such positive attributes, these concretes are expected to find more widespread application in concrete structures in harsh-climatic conditions. This paper provides additional data and analysis that could accelerate the adoption of these materials in practice.
    DOI/handle
    http://dx.doi.org/10.1016/j.jobe.2020.101669
    http://hdl.handle.net/10576/40090
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]
    • Chemical Engineering [‎1194‎ items ]
    • Civil and Environmental Engineering [‎862‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video