• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synergistic Behavior of Polyethyleneimine and Epoxy Monomers Loaded in Mesoporous Silica as a Corrosion-Resistant Self-Healing Epoxy Coating

    Thumbnail
    View/Open
    acsomega.2c01508.pdf (14.87Mb)
    Date
    2022
    Author
    Nawaz, Muddasir
    Radwan, A. Bahgat
    Kalambate, Pramod K.
    Laiwattanapaisal, Wanida
    Ubaid, Fareeha
    Akbar, Himyan M.
    Shakoor, R. A.
    Kahraman, Ramazan
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Corrosion is a significant problem and is, to a large extent, responsible for the degradation of metallic parts. In this direction, mesoporous silica particles (MSPs) were synthesized by a sol–gel technique and had an average pore diameter of ∼6.82 nm. The MSPs were loaded with polyethyleneimine (PEI) and epoxy monomers and, after that, carefully mixed into the epoxy matrix to formulate new modified polymeric coatings. The microstructural, compositional, structural, and thermal properties were investigated using various characterizing tools [Transmission electron microscopy, Fourier transform infrared spectroscopy, hermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy]. TGA confirms the loading of mesoporous silica with a corrosion inhibitor, and its estimated loading amount is ∼8%. The electrochemical impedance spectroscopy properties of the reference and modified coated samples confirm the promising anti-corrosive performance of the synthesized polymeric smart coatings. Localized electrochemical tests (scanning vibrating electrode technique and scanning ion-selective electrode technique) evidence the corrosion inhibition ability of the coating, and its self-healing was also observed during 24 h of immersion. The decent anti-corrosion performance of the modified coatings can be credited to the efficient synergistic effect of the PEI and epoxy monomer.
    DOI/handle
    http://dx.doi.org/10.1021/acsomega.2c01508
    http://hdl.handle.net/10576/40099
    Collections
    • Center for Advanced Materials Research [‎1564‎ items ]
    • Chemical Engineering [‎1249‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video