• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Use of two bacteria for biological control of bayoud disease caused by Fusarium oxysporum in date palm (Phoenix dactylifera L) seedlings

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2012-06
    Author
    Dihazi, Abdelhi
    Jaiti, Fatima
    Taktak, Wafa
    Kilani-Feki, Olfa
    Jaoua, Samir
    Driouich, Azeddine
    Baaziz, Mohamed
    Daayf, Fouad
    Serghini, Mohammed Amine
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The Bayoud, caused by Fusarium oxysporum f. sp. albedinis (Foa), is the most destructive disease of date palm (Phoenix dactylifera L) in Morocco and Algeria, with no effective control strategy yet available. In this work, two bacteria, Bacillus amyloliquefaciens strain Ag1 (Ag) and Burkholderia cepacia strain Cs5 (Cs), were examined for their potential to control this disease. Both bacterial strains inhibited both growth and sporulation of Foa. They released compounds into the culture medium, which resulted into cytological changes in Foa's mycelial structure. When Jihel-date palm plantlets, a susceptible cultivar, were induced with these bacteria, the size of the necrosis zone, which reflected the spreading of the pathogen, was reduced by more than 70%, as compared with uninduced controls. To further investigate the mechanisms of such disease reduction, phenolic compounds and peroxidase activity were assessed. One month after inoculation, date palm defense reactions against Foa were different depending on the bacterium used, B. cepacia led to higher accumulation of constitutive caffeoylshikimic acid isomers while B. amyloliquefaciens triggered the induction of new phenolic compounds identified as hydroxycinnamic acid derivatives. Peroxidase activity has also been stimulated significantly and varied with the bacterial strain used and with Foa inoculation. These results add to the promising field of investigation in controlling Bayoud disease.
    DOI/handle
    http://dx.doi.org/10.1016/j.plaphy.2012.03.003
    http://hdl.handle.net/10576/4024
    Collections
    • Biological & Environmental Sciences [‎932‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video