• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multivariate statistical process control charts based on the approximate sequential ?2 test

    Thumbnail
    Date
    2014-05
    Author
    Kim, J.
    Al-Khalifa, K.N.
    Jeong, M.K.
    Hamouda, A.M.S.
    Elsayed, E.A.
    Metadata
    Show full item record
    Abstract
    Similar to the univariate CUSUM chart, a multivariate CUSUM (MCUSUM) chart can be designed to detect a particular size of the mean shift optimally based on the scheme of a sequential likelihood ratio test for the noncentrality parameter. However, in multivariate case, the probability ratio of a sequential test is intractable mathematically and the test statistic based on the ratio does not have a closed form expression which makes it impractical for real application. We drive an approximate log-likelihood ratio and propose a multivariate statistical process control chart based on a sequential ?2 test to detect a change in the noncentrality parameter. The statistical properties of the proposed test statistic are explored. The average runs length (ARL) performance of the proposed charts is compared with other MCUSUM charts for process mean monitoring. The experimental results reveal that the proposed charts achieve superior, both zero-state and steady-state, ARL performance over a wide range of mean shifts, especially when the dimension of measurements is large.
    DOI/handle
    http://dx.doi.org/10.1080/00207543.2014.917212
    http://hdl.handle.net/10576/4148
    Collections
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video