• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A machine learning framework for enhancing digital experiences in cultural heritage

    Thumbnail
    Date
    2020
    Author
    Belhi, Abdelhak
    Bouras, Abdelaziz
    Al-Ali, Abdulaziz Khalid
    Foufou, Sebti
    Metadata
    Show full item record
    Abstract
    Purpose: Digital tools have been used to document cultural heritage with high-quality imaging and metadata. However, some of the historical assets are totally or partially unlabeled and some are physically damaged, which decreases their attractiveness and induces loss of value. This paper introduces a new framework that aims at tackling the cultural data enrichment challenge using machine learning. Design/methodology/approach: This framework focuses on the automatic annotation and metadata completion through new deep learning classification and annotation methods. It also addresses issues related to physically damaged heritage objects through a new image reconstruction approach based on supervised and unsupervised learning. Findings: The authors evaluate approaches on a data set of cultural objects collected from various cultural institutions around the world. For annotation and classification part of this study, the authors proposed and implemented a hierarchical multimodal classifier that improves the quality of annotation and increases the accuracy of the model, thanks to the introduction of multitask multimodal learning. Regarding cultural data visual reconstruction, the proposed clustering-based method, which combines supervised and unsupervised learning is found to yield better quality completion than existing inpainting frameworks. Originality/value: This research work is original in sense that it proposes new approaches for the cultural data enrichment, and to the authors' knowledge, none of the existing enrichment approaches focus on providing an integrated framework based on machine learning to solve current challenges in cultural heritage. These challenges, which are identified by the authors are related to metadata annotation and visual reconstruction. 2020, Emerald Publishing Limited.
    DOI/handle
    http://dx.doi.org/10.1108/JEIM-02-2020-0059
    http://hdl.handle.net/10576/41717
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video