• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Spatiotemporal Tensor Completion for Improved Urban Traffic Imputation

    Thumbnail
    Date
    2022
    Author
    Ben Said, Ahmed
    Erradi, Abdelkarim
    Metadata
    Show full item record
    Abstract
    Effective management of urban traffic is important for any smart city initiative. Therefore, the quality of the sensory traffic data is of paramount importance. However, like any sensory data, urban traffic data are prone to imperfections leading to missing measurements. In this paper, we focus on inter-region traffic data completion. We model the inter-region traffic as a spatiotemporal tensor that suffers from missing measurements. To recover the missing data, we propose an enhanced CANDECOMP/PARAFAC (CP) completion approach that considers the urban and temporal aspects of the traffic. To derive the urban characteristics, we divide the area of study into regions. Then, for each region, we compute urban feature vectors inspired from biodiversity which are used to compute the urban similarity matrix. To mine the temporal aspect, we first conduct an entropy analysis to determine the most regular time-series. Then, we conduct a joint Fourier and correlation analysis to compute its periodicity and construct the temporal matrix. Both urban and temporal matrices are fed into a modified CP-completion objective function. To solve this objective, we propose an alternating least square approach that operates on the vectorized version of the inputs. We conduct comprehensive comparative study with two evaluation scenarios. In the first one, we simulate random missing values. In the second scenario, we simulate missing values at a given area and time duration. Our results demonstrate that our approach provides effective recovering performance reaching 26% improvement compared to state-of-art CP approaches and 35% compared to state-of-art generative model-based approaches. 2000-2011 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/TITS.2021.3062999
    http://hdl.handle.net/10576/41791
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video