• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Studying competitive sorption behavior of methylene blue and malachite green using multivariate calibration

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2014-03
    Author
    Issa, Ayman A.
    Al-Degs, Yahya S.
    Al-Ghouti, Mohammad A.
    Olimat, Amal A.M.
    Metadata
    Show full item record
    Abstract
    Sorption of methylene blue MB and malachite green MG (with 96.4% spectral overlap) from bi-solute solution by natural kaolinitic-clay and philipsite-rich-zeolite tuff was addressed where solutes simply quantified using multivariate calibration MVC. For simultaneous quantification of dyes in solution, partial least squares PLS1 (a powerful MVC tool) was found satisfactory with high recovery (98.7–103.2%) and precision (RSD 9.2–11.7%). In MVC, the spectral range 409–700 nm is used and 43 spectral points where taken for each sample. Natural clay (80% kaolinite) and zeolite tuff (95% philipsite) showed a high uptake for dyes with maximum capacities of 0.77 mmol MB/gclay and 0.64 mmol MG/gclay, 0.66 mmol MB/gzeolite and 1.22 mmol MG/gzeolite reported at 1.0 g/L, particle diameter <45 μm, 20.0 °C and pH 7.0. Due to competition between dyes for active sites, the sorption capacities were reduced and the highest reduction was 30% which observed for MG sorption by clay. The competition between dyes was higher in clay as indicated from competition factors CFs. Sorption isotherms of bi-solute systems have irregular L2 isotherm shape and the data were fairly correlated to Langmuir and competitive Langmuir models. The contribution of ion-exchange mechanism in dyes removal was found significant, 61% and 79% of MB were removed via ion-exchange by clay and zeolite, respectively. Using MVC, studying competitive sorption of MB and MG without the need for chromatographic separation is accomplished. Studying competitive sorption of more than two solutes using PLS1 is also possible indicating the high resolution power of this technique.
    DOI/handle
    http://dx.doi.org/10.1016/j.cej.2013.10.084
    http://hdl.handle.net/10576/4244
    Collections
    • Biological & Environmental Sciences [‎931‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video