• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dental caries detection using a semi-supervised learning approach

    Thumbnail
    View/Open
    s41598-023-27808-9 (1).pdf (3.132Mb)
    Date
    2023
    Author
    Qayyum, Adnan
    Tahir, Ahsen
    Butt, Muhammad Atif
    Luke, Alexander
    Abbas, Hasan Tahir
    Qadir, Junaid
    Arshad, Kamran
    Assaleh, Khaled
    Imran, Muhammad Ali
    Abbasi, Qammer H.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Early diagnosis of dental caries progression can prevent invasive treatment and enable preventive treatment. In this regard, dental radiography is a widely used tool to capture dental visuals that are used for the detection and diagnosis of caries. Different deep learning (DL) techniques have been used to automatically analyse dental images for caries detection. However, most of these techniques require large-scale annotated data to train DL models. On the other hand, in clinical settings, such medical images are scarcely available and annotations are costly and time-consuming. To this end, we present an efficient self-training-based method for caries detection and segmentation that leverages a small set of labelled images for training the teacher model and a large collection of unlabelled images for training the student model. We also propose to use centroid cropped images of the caries region and different augmentation techniques for the training of self-supervised models that provide computational and performance gains as compared to fully supervised learning and standard self-supervised learning methods. We present a fully labelled dental radiographic dataset of 141 images that are used for the evaluation of baseline and proposed models. Our proposed self-supervised learning strategy has provided performance improvement of approximately 6% and 3% in terms of average pixel accuracy and mean intersection over union, respectively as compared to standard self-supervised learning. Data and code will be made available to facilitate future research. 2023, The Author(s).
    DOI/handle
    http://dx.doi.org/10.1038/s41598-023-27808-9
    http://hdl.handle.net/10576/42775
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video