• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhancing organic contaminant degradation through integrating advanced oxidation processes with microbial electrochemical systems

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2666911023000011-main.pdf (1.690Mb)
    Date
    2023
    Author
    Yang, Kaichao
    Abu-Reesh, Ibrahim M.
    He, Zhen
    Metadata
    Show full item record
    Abstract
    Microbial electrochemical systems (MES) are studied to degrade organic contaminants with a lower energy demand, but degradation of recalcitrant compounds tends to be challenging. To enhance contaminant degradation in MES, advanced oxidation processes (AOPs) are synergistically linked to create cooperative processes such as bio-electro-Fenton (BEF) and enhanced bioanodes. BEF can achieve a high contaminant degradation efficiency with a low energy consumption due to the ability for energy recovery from the anodic organic wastes. Modifying a bioanode with catalytic oxidation materials, e.g., photocatalyst and MnO2, will achieve organic removal via the cooperation of catalysis and biodegradation. This paper has provided a concise review on the integration of AOPs with MES and identified and discussed the challenges such as deeper understanding of the electron transfer mechanisms, development of low-cost membrane, and the synergetic effects between functional materials and bacteria that are important to develop AOP-MES treatment systems. 2023 The Authors
    DOI/handle
    http://dx.doi.org/10.1016/j.hazl.2023.100075
    http://hdl.handle.net/10576/42783
    Collections
    • Chemical Engineering [‎1194‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video