• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Controlling the trajectory of a flexible ultrathin endoscope for fully automated bladder surveillance

    Thumbnail
    Date
    2014-02
    Author
    Burkhardt, Matthew R.
    Soper, Timothy D.
    Yoon, Woon Jong
    Seibel, Eric J.
    Metadata
    Show full item record
    Abstract
    During cystoscopy, the urologist manually steers a cyst scope inside a patient's bladder to visually inspect the inner surface. Cystoscopies are performed as part of surveillance for bladder cancer, making it the most expensive cancer to treat over a patient's lifetime. An automated bladder scanning system has been devised to reduce workload and cost by relieving the urologist from performing surveillance. Presented here is a proof-of-concept apparatus that controls the motion of a miniature flexible endoscope. Image-based feedback is used to adjust the endoscope's movement so that captured images overlap with one another, ensuring that the entire inner surface of the bladder is imaged. Within a bladder phantom, the apparatus adaptively created and followed a spherical scan pattern comprised of 13 individual latitudes and 508 captured images, while accepting between 60% and 90% image overlap between adjacent images. The elapsed time and number of captured images were sensitive to the apparatus's placement within the phantom and the acceptable image overlap percentage range. A mosaic of captured images was generated to validate comprehensive surveillance. Overall, a robotically controlled endoscope used in conjunction with image-based feedback may permit fully automated and comprehensive bladder surveillance to be conducted without direct clinician oversight.
    DOI/handle
    http://dx.doi.org/10.1109/TMECH.2013.2237783
    http://hdl.handle.net/10576/4284
    Collections
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video