• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A validated design methodology for a closed-loop subsonic wind tunnel

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2014-02
    Author
    Calautit, John Kaiser
    Chaudhry, Hassam Nasarullah
    Hughes, Ben Richard
    Sim, Lik Fang
    Metadata
    Show full item record
    Abstract
    A systematic investigation into the design and simulation of flow parameters in a closed-loop wind tunnel was carried out using Computational Fluid Dynamics (CFD). The analytical model for estimating pressure losses were directed as input boundary conditions. Full-scale model of the entire wind tunnel was considered instead of the conventional approach, in which only test section flow is simulated. This allowed for optimisation of flow quality not only in the test section but also the flow in the entire circuit. Analysis of the guide vane configurations showed that test section flow quality was more affected by flow conditions in upstream than downstream sections. Hence, special attention must be given while designing the vanes at upstream turns particularly corners in line with the test section. Validation of the test section with block model showed that CFD was able to replicate wind tunnel measurements of velocity, turbulence intensity and pressure coefficient with error below 10%.
    DOI/handle
    http://dx.doi.org/10.1016/j.jweia.2013.12.010
    http://hdl.handle.net/10576/4285
    Collections
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video