• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bayesian Monitoring of Linear Profiles Using DEWMA Control Structures with Random X

    Thumbnail
    View/Open
    Bayesian_Monitoring_of_Linear_Profiles_Using_DEWMA_Control_Structures_With_Random__X.pdf (11.86Mb)
    Date
    2018
    Author
    Abbasi, Saddam Akber
    Abbas, Tahir
    Riaz, Muhammad
    Gomaa, Abdel Salam
    Metadata
    Show full item record
    Abstract
    The process structures of manufacturing industry are efficiently modeled using linear profiles. Classical and Bayesian set-ups are two well-appreciated schemes for designing control charts for the monitoring of process structures. Mostly in profiles monitoring the independent variables along with the process parameters are assumed fixed. There are manufacturing processes where these conditions may not hold. The advancement in technology and day-to-day changes in process structures caused the parametric uncertainty along with variability in explanatory variables. This paper considered the case of random X and assumes different conjugate and non-conjugate priors to handle parametric uncertainty using double exponentially weighted moving average (DEWMA) control charts. Three univariate DEWMA charts are designed for the monitoring of Y-intercepts, slopes, and error variances. The average run length criterion has been used to evaluate the proposed and competing charts. The wide spread relative study identifies that the proposed Bayesian DEWMA control charts are better than the competing charts based on early detection of out-of-control profiles, particularly for smaller value shifts. The Bayesian DEWMA charts using conjugate priors are the quickest in all as they take less sample points to show out-of-control profile. A case study has been considered to further justify the superiority of Bayesian DEWMA charts over competing charts. 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2018.2885014
    http://hdl.handle.net/10576/43507
    Collections
    • Mathematics, Statistics & Physics [‎810‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video