• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Green synthesis of MNO nanoparticles using abutilon indicum leaf extract for biological, photocatalytic, and adsorption activities

    Thumbnail
    View/Open
    biomolecules-10-00785.pdf (7.350Mb)
    Date
    2020
    Author
    Khan, Shakeel A.
    Shahid, Sammia
    Shahid, Basma
    Fatima, Urooj
    Abbasi, Saddam A.
    Metadata
    Show full item record
    Abstract
    We report the synthesis of MnO nanoparticles (AI-MnO NAPs) using biological molecules of Abutilon indicum leaf extract. Further, they were evaluated for antibacterial and cytotoxicity activity against different pathogenic microbes (Escherichia coli, Bordetella bronchiseptica, Staphylococcus aureus, and Bacillus subtilis) and HeLa cancerous cells. Synthesized NAPs were also investigated for photocatalytic dye degradation potential against methylene blue (MB), and adsorption activity against Cr(VI) was also determined. Results from Scanning electron microscope (SEM), X-ray powder diffraction (XRD), Energy-dispersive X-ray (EDX), and Fourier-transform infrared spectroscopy (FTIR) confirmed the successful synthesis of NAPs with spherical morphology and crystalline nature. Biological activity results demonstrated that synthesized AI-MnO NAPs exhibited significant antibacterial and cytotoxicity propensities against pathogenic microbes and cancerous cells, respectively, compared with plant extract. Moreover, synthesized AI-MnO NAPs demonstrated the comparable biological activities results to standard drugs. These excellent biological activities results are attributed to the existence of the plant's biological molecules on their surfaces and small particle size (synergetic effect). Synthesized NAPs displayed better MB-photocatalyzing properties under sunlight than an ultraviolet lamp. The Cr(VI) adsorption result showed that synthesized NAPs efficiently adsorbed more Cr(VI) at higher acidic pH than at basic pH. Hence, the current findings suggest that Abutilon indicum is a valuable source for tailoring the potential of NAPs toward various enhanced biological, photocatalytic, and adsorption activities. Consequently, the plant's biological molecule-mediated synthesized AI-MnO NAPs could be excellent contenders for future therapeutic applications.
    DOI/handle
    http://dx.doi.org/10.3390/biom10050785
    http://hdl.handle.net/10576/43516
    Collections
    • Mathematics, Statistics & Physics [‎810‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video