• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Marine Science Cluster
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Marine Science Cluster
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Probabilistic human health risk assessment of trace elements in ballast water treated by reverse osmosis desalination plants

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0025326X2300098X-main.pdf (1.219Mb)
    Date
    2023-03-31
    Author
    Basem, Shomar
    Solano, Joaquim Rovira
    Metadata
    Show full item record
    Abstract
    Very few studies have paid attention to the transport of heavy and toxic metals via ballast water coming from different countries of the world. In the present study, ballast water samples (n = 83) were collected from ships, tankers and vessels of 21 different origins arriving at the two main ports of Qatar. Besides the basic physical parameters of pH, electrical conductivity (EC), and total organic carbon (TOC), concentrations of 24 elements (As, Sb, Al, Cd, Pb, Si, V, Ag, Zn, Cr, Mn, Ba, Co, Ni, Sr, Be, Cu, Tl, B, Fe, Se, Sn, Mo and U) were determined. In addition, the potential human health risks of drinking water treated by reverse osmosis (RO) were assessed using Monte Carlo simulations. Two scenarios were used to assess the risks to the general population, namely, seawater (baseline) and ballast water (worst-case scenario). Our results show significant differences among the tested elements, depending on the origin of the ballast water. The human health assessment showed that all hazardous quotients (HQs) were below the safety limits. However, for the ballast water scenario, thallium (Tl) HQs were 10 % above the safety level. Ballast water in Qatar does not pose risks for human health through drinking water, but ballast water discharges should take into consideration seawater catchments and potential toxic elements, especially Tl. Regular monitoring campaigns need to be performed.
    URI
    https://www.sciencedirect.com/science/article/pii/S0025326X2300098X
    DOI/handle
    http://dx.doi.org/10.1016/j.marpolbul.2023.114667
    http://hdl.handle.net/10576/43526
    Collections
    • Marine Science Cluster [‎215‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video