• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Facility location decisions within integrated forward/reverse logistics under uncertainty

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Version of Record-Open Access (310.5Kb)
    Date
    2014
    Author
    Ashfari, Hamid
    Sharifi, Masoud
    ElMekkawy, Tarek Y.
    Peng, Qingjin
    Metadata
    Show full item record
    Abstract
    In this paper, a stochastic mixed integer linear programming (SMILP) model is proposed to optimize the location and size of facilities and service centres in integrated forward and reverse streams under uncertainty. The objective of the model is to minimize establishment, transportation and inventory management costs and simultaneously maximize customer satisfaction with sustainable perspective. The model incorporates different elements and features of distribution networks including inventory management, transportation and establishment of new facilities as well as existing centres. The presented model is the streamlined approach for multi-objective, multi-period, multi-commodity distribution system, and it is supported by a real case study in automobile after sales network. Genetic algorithm is implemented to solve the model in reasonable time. The performance of the model and the effects of uncertainty on provided solution are studied under different cases. Competitive result of the stochastic model compared to deterministic model ensures that the proposed approach is valid to be applied for decision making under uncertainty.
    DOI/handle
    http://dx.doi.org/10.1016/j.procir.2014.01.092
    http://hdl.handle.net/10576/4450
    Collections
    • Mechanical & Industrial Engineering [‎1460‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video