• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Phase change materials based on high-density polyethylene filled with microencapsulated paraffin wax

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2014-11
    Author
    Krupa, Igor
    Nogellova, Zuzana
    Spitalsky, Zdenko
    Janigova, Ivica
    Boh, Bojana
    Sumiga, Bostjan
    Kleinova, Angela
    Karkri, Mustapha
    Almaadeed, Mariam A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    A modified in situ polymerization microencapsulation procedure for the preparation of microcapsules with paraffin wax cores (43 wt.%) and melamine–formaldehyde resin shells having a uniform size distribution and a spherical shape with average diameters of approximately 15 μm was developed. The high-density polyethylene/microcapsule blends were prepared via two routes. In the first case, the dry high-density polyethylene powder covered by microcapsules was simply hot pressed, whereas, in the second case, the dry high density polyethylene/capsule powder was first blended in the molten state to obtain better homogeneity before hot pressing. It was observed that both systems behave qualitatively the same with comparable mechanical properties and thermal behavior. The thermal stability of high-density polyethylene/microcapsule blends characterized by thermogravimetry is significantly lower than that of neat high-density polyethylene. The selected characteristic temperatures of degradation decreased by more than 200 °C compared with the related temperatures for neat high-density polyethylene. An analysis based on Differential Scanning Calorimetry revealed separated melting and crystallization behavior of wax within the capsules and high density polyethylene in the blends. The enthalpies of melting and crystallization are proportional to the amount of individual components in the material. The capsules have a strong plasticizing effect on the high density polyethylene, resulting in a significant decrease in the melting and crystallization temperatures. The plasticizing effect was also confirmed by measurements of the tensile mechanical properties and rheological behavior.
    DOI/handle
    http://dx.doi.org/10.1016/j.enconman.2014.06.061
    http://hdl.handle.net/10576/4475
    Collections
    • Center for Advanced Materials Research [‎1486‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video