• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    State of charge estimation for a group of lithium-ion batteries using long short-term memory neural network

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2352152X2200771X-main.pdf (8.439Mb)
    Date
    2022
    Author
    Almaita, Eyad; Alshkoor, Saleh; Abdelsalam, Emad; Almomani, Fares
    Metadata
    Show full item record
    Abstract
    The present paper estimates for the first time the State of Charge (SoC) of a high capacity grid-scale lithium-ion battery storage system used to improve the power profile in a distribution network. The proposed long short-term memory (LSTM) neural network model can overcome the problems associated with the nonlinear battery model and adapt to the complexity and uncertainty of the estimation process. The accuracy of the developed model was compared with results obtained from Feed-Forward Neural Network (FFNN) topology and Deep-Feed-Forward Neural Network (DFFNN) topology under three different time series. The system was trained using real data from the Al-Manara PV power plant. The LSTM with learn-and-adapt-to-train-date properties, as well as the idea of "forget gate," shows exceptional ability to determine the SoC under various ID data. The LSTM properly calculated the SoC for all three-time models with a maximum standard error (MSE) of less than 0.62%, while the FFNN and DFFNN provided a fair estimate for the SoC with MSEs of 5.37 to 9.22% and 4.03 to 7.37%, respectively. The promising results can lead to excellent monitoring and control of battery management systems.
    DOI/handle
    http://dx.doi.org/10.1016/j.est.2022.104761
    http://hdl.handle.net/10576/44769
    Collections
    • Chemical Engineering [‎1196‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video