• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An integrated framework of data-driven, metaheuristic, and mechanistic modeling approach for biomass pyrolysis

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2022
    Author
    Ullah, Zahid
    Khan, Muzammil
    Naqvi, Salman Raza
    Khan, Muhammad Nouman Aslam
    Farooq, Wasif
    Anjum, Muhammad Waqas
    Yaqub, Muhammad Waqas
    AlMohamadi, Hamad
    Almomani, Fares
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    This study presents an integrated hybrid framework of data-driven (cascade forward neural network (CFNN)), metaheuristic (artificial bee colony (ABC)), and a mechanistic modeling (Aspen simulation) approach for the biomass pyrolysis process for bio-oil production. We applied CFNN and an ABC to predict and optimize bio-oil yield. The CFNN model achieved high prediction performance with a correlation coefficient value of 0.95 and a root mean squared error value of 0.39. Furthermore, the CFNN-ABC derived optimum parameters were then validated using a mechanistic model of the pyrolysis process. The CFNN and Aspen simulation results were following the experimental results, with an average deviation of 5%. The feature importance showed that the internal information about biomass was more relevant than external factors for bio-oil yield. The partial dependence plots were developed to know the insights into the biomass pyrolysis process. This study presents a modeling and simulation platform for bio-oil production that can increase the waste-to-energy process and can be helpful for academia.
    DOI/handle
    http://dx.doi.org/10.1016/j.psep.2022.04.013
    http://hdl.handle.net/10576/44777
    Collections
    • Chemical Engineering [‎1196‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video