• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    USING EMBEDDED MACHINE LEARNING IN THE PHYSICAL WORLD TO DETECT TOXICITY IN SPOKEN LANGUAGE

    View/Open
    Ahlam Abu Nada_ OGS Approved Thesis.pdf (1.225Mb)
    Date
    2023-06
    Author
    ABU NADA, AHLAM HUSNI
    Metadata
    Show full item record
    Abstract
    Toxicity is a prevalent social behavior that involves the use of hate speech, offensive language, bullying, and abusive speech. While text-based approaches for toxicity detection are common, there is limited research on processing speech signals in the physical world. Detecting toxicity in the physical world is challenging due to the difficulty of integrating AI-capable computers into the environment. We propose a lightweight transformer model based on wav2vec2.0 and optimize it using quantization and knowledge distillation techniques. Our model uses multitask learning and achieves an average macro F1-score of 90.3% and a weighted accuracy of 88%, outperforming state-ofthe- art methods on DeToxy-B and the IEMOCAP datasets. In our study, quantization demonstrated a significant reduction in model size by almost fourfold and a 3.3-fold decrease in RAM usage. The marginal average F1 score decrease was limited to only 1%. On the other hand, knowledge distillation resulted in a reduction of model size by 3.7 times, RAM usage by 1.9 times, and inference time by 1.7 times, accompanied by an accuracy decrease of 8%. The combination of both techniques yielded substantial outcomes, including a remarkable model size reduction by a factor of 14.6, approximately 4.3 times lower RAM usage, and a notable 2.4-fold improvement in inference time. Our compact model is the first end-to-end speech-based toxicity detection model based on a lightweight transformer model suitable for deployment in physical spaces. The results show its feasibility for toxicity detection on edge devices in real-world environments.
    DOI/handle
    http://hdl.handle.net/10576/45069
    Collections
    • Computing [‎103‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video