• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effectiveness of combined time-frequency imageand signal-based features for improving the detection and classification of epileptic seizure activities in EEG signals

    Thumbnail
    Date
    2014
    Author
    Boubchir, Larbi
    Al-Maadeed, Somaya
    Bouridane, Ahmed
    Metadata
    Show full item record
    Abstract
    This paper presents new time-frequency (T-F) features to improve the detection and classification of epileptic seizure activities in EEG signals. Most previous methods were based only on signal features derived from the instantaneous frequency and energies of EEG signals generated from different spectral sub-bands. The proposed features are based on T-F image descriptors, which are extracted from the T-F representation of EEG signals, are considered and processed as an image using image processing techniques. The idea of the proposed feature extraction method is based on the application of Otsu's thresholding algorithm on the T-F image in order to detect the regions of interest where the epileptic seizure activity appears. The proposed T-F image related-features are then defined to describe the statistical and geometrical characteristics of the detected regions. The results obtained on real EEG data suggest that the use of T-F image based-features with signal related-features improve significantly the performance of the EEG seizure detection and classification by up to 5% for 120 EEG signals, using a multi-class SVM classifier.
    DOI/handle
    http://dx.doi.org/10.1109/CoDIT.2014.6996977
    http://hdl.handle.net/10576/4535
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      A Deep Learning Model for LoRa Signals Classification Using Cyclostationay Features 

      Almohamad A.; Hasna , Mazen; Althunibat S.; Tekbiyik K.; Qaraqe K. ( IEEE Computer Society , 2021 , Conference)
      With the witnessed exponential growth of Internet of Things (IoT) nodes deployment following the emerging applications, multiple variants of technologies have been proposed to handle the IoT requirements. Among the proposed ...
    • Thumbnail

      Time-frequency features for pattern recognition using high-resolution TFDs: A tutorial review 

      Boashash B.; Khan N.A.; Ben-Jabeur T. ( Elsevier Inc. , 2015 , Article)
      This paper presents a tutorial review of recent advances in the field of time-frequency (t, f) signal processing with focus on exploiting (t, f) image feature information using pattern recognition techniques for detection ...
    • Thumbnail

      Time-frequency detection of slowly varying periodic signals with harmonics: Methods and performance evaluation 

      O'Toole J.M.; Boashash B. (2011 , Article)
      We consider the problem of detecting an unknown signal from an unknown noise type. We restrict the signal type to a class of slowly varying periodic signals with harmonic components, a class which includes real signals ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video