• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Progress and Prospects of Nanocellulose-Based Membranes for Desalination and Water Treatment

    Thumbnail
    View/Open
    Progress and Prospects of Nanocellulose-Based Membranes for Desalination and Water Treatment.pdf (3.448Mb)
    Date
    2022-05-01
    Author
    Saud, Asif
    Saleem, Haleema
    Zaidi, Syed Javaid
    Metadata
    Show full item record
    Abstract
    Membrane-based desalination has proved to be the best solution for solving the water shortage issues globally. Membranes are extremely beneficial in the effective recovery of clean water from contaminated water sources, however, the durability as well as the separation efficiency of the membranes are restricted by the type of membrane materials/additives used in the preparation processes. Nanocellulose is one of the most promising green materials for nanocomposite preparation due to its biodegradability, renewability, abundance, easy modification, and exceptional mechanical properties. This nanocellulose has been used in membrane development for desalination application in the recent past. The study discusses the application of membranes based on different nanocellulose forms such as cellulose nanocrystals, cellulose nanofibrils, and bacterial nanocellulose for water desalination applications such as nanofiltration, reverse osmosis, pervaporation, forward osmosis, and membrane distillation. From the analysis of studies, it was confirmed that the nanocellulose-based membranes are effective in the desalination application. The chemical modification of nanocellulose can definitely improve the surface affinity as well as the reactivity of membranes for the efficient separation of specific contaminants/ions.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85129703809&origin=inward
    DOI/handle
    http://dx.doi.org/10.3390/membranes12050462
    http://hdl.handle.net/10576/45379
    Collections
    • Center for Advanced Materials Research [‎1485‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video