Multilinear sparse decomposition for best spectral bands selection
Abstract
Optimal spectral bands selection is a primordial step in multispectral images based systems for face recognition. In this context, we select the best spectral bands using a multilinear sparse decomposition based approach. Multispectral images of 35 subjects presenting 25 different lengths from 480nm to 720nm and three lighting conditions: fluorescent, Halogen and Sun light are groupped in a 3-mode face tensor T of size 35x25x2 . T is then decomposed using 3-mode SVD where three mode matrices for subjects, spectral bands and illuminations are sparsely determined. The 25x25 spectral bands mode matrix defines a sparse vector for each spectral band. Spectral bands having the sparse vectors with the lowest variation with illumination are selected as the best spectral bands. Experiments on two state-of-the-art algorithms, MBLBP and HGPP, showed the effectiveness of our approach for best spectral bands selection.
Collections
- Computer Science & Engineering [2426 items ]