• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Accurate Reservoir's Bubble Point Pressure Correlation

    Thumbnail
    View/Open
    acsomega.2c00651.pdf (5.173Mb)
    Date
    2022
    Author
    Alakbari, Fahd Saeed
    Mohyaldinn, Mysara Eissa
    Ayoub, Mohammed Abdalla
    Muhsan, Ali Samer
    Hussein, Ibnelwaleed A.
    Metadata
    Show full item record
    Abstract
    Bubble point pressure (Pb) is essential for determining petroleum production, simulation, and reservoir characterization calculations. The Pbcan be measured from the pressure-volume-temperature (PVT) experiments. Nonetheless, the PVT measurements have limitations, such as being costly and time-consuming. Therefore, some studies used alternative methods, namely, empirical correlations and machine learning techniques, to obtain the Pb. However, the previously published methods have restrictions like accuracy, and some use specific data to build their models. In addition, most of the previously published models have not shown the proper relationships between the features and targets to indicate the correct physical behavior. Therefore, this study develops an accurate and robust correlation to obtain the Pbapplying the Group Method of Data Handling (GMDH). The GMDH combines neural networks and statistical methods that generate relationships among the feature and target parameters. A total of 760 global datasets were used to develop the GMDH model. The GMDH model is verified using trend analysis and indicates that the GMDH model follows all input parameters' exact physical behavior. In addition, different statistical analyses were conducted to investigate the GMDH and the published models' robustness. The GMDH model follows the correct trend for four input parameters (gas solubility, gas specific gravity, oil specific gravity, and reservoir temperature). The GMDH correlation has the lowest average percent relative error, root mean square error, and standard deviation of 8.51%, 12.70, and 0.09, respectively, and the highest correlation coefficient of 0.9883 compared to published models. The different statistical analyses indicated that the GMDH is the first rank model to accurately and robustly predict the Pb 2022 American Chemical Society. All rights reserved.
    DOI/handle
    http://dx.doi.org/10.1021/acsomega.2c00651
    http://hdl.handle.net/10576/45406
    Collections
    • Chemical Engineering [‎1199‎ items ]
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video