• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Collaborative Federated Learning for Healthcare: Multi-Modal COVID-19 Diagnosis at the Edge

    Thumbnail
    View/Open
    Collaborative_Federated_Learning_for_Healthcare_Multi-Modal_COVID-19_Diagnosis_at_the_Edge.pdf (3.211Mb)
    Date
    2022
    Author
    Qayyum, Adnan
    Ahmad, Kashif
    Ahsan, Muhammad Ahtazaz
    Al-Fuqaha, Ala
    Qadir, Junaid
    Metadata
    Show full item record
    Abstract
    Despite significant improvements over the last few years, cloud-based healthcare applications continue to suffer from poor adoption due to their limitations in meeting stringent security, privacy, and quality of service requirements (such as low latency). The edge computing trend, along with techniques for distributed machine learning such as federated learning, has gained popularity as a viable solution in such settings. In this paper, we leverage the capabilities of edge computing in medicine by evaluating the potential of intelligent processing of clinical data at the edge. We utilized the emerging concept of clustered federated learning (CFL) for an automatic COVID-19 diagnosis. We evaluate the performance of the proposed framework under different experimental setups on two benchmark datasets. Promising results are obtained on both datasets resulting in comparable results against the central baseline where the specialized models (i.e., each on a specific image modality) are trained with central data, and improvements of 16% and 11% in overall F1-Scores have been achieved over the trained model trained (using multi-modal COVID-19 data) in the CFL setup on X-ray and Ultrasound datasets, respectively. We also discussed the associated challenges, technologies, and techniques available for deploying ML at the edge in such privacy and delay-sensitive applications. 2020 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/OJCS.2022.3206407
    http://hdl.handle.net/10576/45580
    Collections
    • Computer Science & Engineering [‎2428‎ items ]
    • COVID-19 Research [‎848‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video