• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Global User-Level Perception of COVID-19 Contact Tracing Applications: Data-Driven Approach Using Natural Language Processing

    Thumbnail
    View/Open
    PDF.pdf (1.861Mb)
    Date
    2022
    Author
    Ahmad, Kashif
    Alam, Firoj
    Qadir, Junaid
    Qolomany, Basheer
    Khan, Imran
    Khan, Talhat
    Suleman, Muhammad
    Said, Naina
    Hassan, Syed Zohaib
    Gul, Asma
    Househ, Mowafa
    Al-Fuqaha, Ala
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Background: Contact tracing has been globally adopted in the fight to control the infection rate of COVID-19. To this aim, several mobile apps have been developed. However, there are ever-growing concerns over the working mechanism and performance of these applications. The literature already provides some interesting exploratory studies on the community's response to the applications by analyzing information from different sources, such as news and users' reviews of the applications. However, to the best of our knowledge, there is no existing solution that automatically analyzes users' reviews and extracts the evoked sentiments. We believe such solutions combined with a user-friendly interface can be used as a rapid surveillance tool to monitor how effective an application is and to make immediate changes without going through an intense participatory design method. Objective: In this paper, we aim to analyze the efficacy of AI and NLP techniques for automatically extracting and classifying the polarity of users' sentiments by proposing a sentiment analysis framework to automatically analyze users' reviews on COVID-19 contact tracing mobile apps. We also aim to provide a large-scale annotated benchmark data set to facilitate future research in the domain. As a proof of concept, we also developed a web application based on the proposed solutions, which is expected to help the community quickly analyze the potential of an application in the domain. Methods: We propose a pipeline starting from manual annotation via a crowd-sourcing study and concluding with the development and training of artificial intelligence (AI) models for automatic sentiment analysis of users' reviews. In detail, we collected and annotated a large-scale data set of user reviews on COVID-19 contact tracing applications. We used both classical and deep learning methods for classification experiments. Results: We used 8 different methods on 3 different tasks, achieving up to an average F1 score of 94.8%, indicating the feasibility of the proposed solution. The crowd-sourcing activity resulted in a large-scale benchmark data set composed of 34,534 manually annotated reviews. Conclusions: The existing literature mostly relies on the manual or exploratory analysis of users' reviews on applications, which is tedious and time-consuming. In existing studies, generally, data from fewer applications are analyzed. In this work, we showed that AI and natural language processing techniques provide good results for analyzing and classifying users' sentiments' polarity and that automatic sentiment analysis can help to analyze users' responses more accurately and quickly. We also provided a large-scale benchmark data set. We believe the presented analysis, data set, and proposed solutions combined with a user-friendly interface can be used as a rapid surveillance tool to analyze and monitor mobile apps deployed in emergency situations leading to rapid changes in the applications without going through an intense participatory design method. Kashif Ahmad, Firoj Alam, Junaid Qadir, Basheer Qolomany, Imran Khan, Talhat Khan, Muhammad Suleman, Naina Said, Syed Zohaib Hassan, Asma Gul, Mowafa Househ, Ala Al-Fuqaha.
    DOI/handle
    http://dx.doi.org/10.2196/36238
    http://hdl.handle.net/10576/45583
    Collections
    • Computer Science & Engineering [‎2428‎ items ]
    • COVID-19 Research [‎849‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video