• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nanoparticles in reverse osmosis membranes for desalination: A state of the art review

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020-02-01
    Author
    Saleem, Haleema
    Zaidi, Syed Javaid
    Metadata
    Show full item record
    Abstract
    The development of thin-film nanocomposite (TFNC) membranes utilizing nanoparticles present remarkable opportunity in the desalination industry. This review offers a comprehensive and in-depth analysis of TFNC membranes for reverse osmosis (RO) desalination by focusing on different issues existing in the RO process. Recent researches on nanoparticle incorporated TFNC membranes for application in water purification have been critically analyzed. The widely tested nanoparticles in these researches include carbon-based (carbon nanotube, graphene-oxide), metal and metal oxides-based (silver, copper, titanium dioxide, zinc oxide, alumina and metal-organic frameworks), and other nano-sized fillers like silica, halloysite, zeolite and cellulose-nanocrystals based. These nanoparticles demonstrated pronounced effect in terms of water flux, salt rejection, chlorine resistance, and anti-fouling properties of TFNC membranes relative to the typical thin-film composite (TFC) membranes. Here, we also focus on the environmental impact, commercialization, and future scope of TFNC membranes. From the current review, it is evident that the nanomaterials possess exclusive properties, which can contribute to the advancement of high-tech nanocomposite membranes with improved capabilities for desalination. Despite all the developments, there still exist significant difficulties in the large-scale production of these membranes. Hence, additional studies in this field are required to produce TFNC membrane with increased performance for commercial application.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85074657974&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.desal.2019.114171
    http://hdl.handle.net/10576/45633
    Collections
    • Center for Advanced Materials Research [‎1485‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video