• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Online risk assessment and prediction models for Autonomic Cloud Intrusion srevention systems

    Thumbnail
    Date
    2014
    Author
    Kholidy, Hisham A.
    Erradi, Abdelkarim
    Abdelwahed, Sherif
    Yousof, Ahmed M.
    Ali, Hisham Arafat
    Metadata
    Show full item record
    Abstract
    The extensive use of virtualization in implementing cloud infrastructure brings unrivaled security concerns for cloud tenants or customers and introduces an additional layer that itself must be completely configured and secured. Intruders can exploit the large amount of cloud resources for their attacks. Most of the current security technologies do not provide the essential security features for cloud systems such as early warnings about future ongoing attacks, autonomic prevention actions, and risk measure. This paper discusses the integration of these three features to our Autonomic Cloud Intrusion Detection Framework (ACIDF). The early warnings are signaled through a new finite State Hidden Markov prediction model that captures the interaction between the attackers and cloud assets. The risk assessment model measures the potential impact of a threat on assets given its occurrence probability. The estimated risk of each security alert is updated dynamically as the alert is correlated to prior ones. This enables the adaptive risk metric to evaluate the cloud's overall security state. The prediction system raises early warnings about potential attacks to the autonomic component, controller. Thus, the controller can take proactive corrective actions before the attacks pose a serious security risk to the system. According to our experiments, both risk metric and prediction model have successfully signaled early warning alerts 39.6 minutes before the launching of the LLDDoS1.0 attack. This gives the system administrator or an autonomic controller ample time to take preventive measures.
    DOI/handle
    http://dx.doi.org/10.1109/AICCSA.2014.7073270
    http://hdl.handle.net/10576/4607
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video