• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Computation of Yvon-Villarceau circles on Dupin cyclides and construction of circular edge right triangles on tori and Dupin cyclides

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2014-12
    Author
    Garnier, Lionel
    Barki, Hichem
    Foufou, Sebti
    Puech, Loic
    Metadata
    Show full item record
    Abstract
    Ring Dupin cyclides are non-spherical algebraic surfaces of degree four that can be defined as the image by inversion of a ring torus. They are interesting in geometric modeling because: (1) they have several families of circles embedded on them: parallel, meridian, and Yvon-Villarceau circles, and (2) they are characterized by one parametric equation and two equivalent implicit ones, allowing for better flexibility and easiness of use by adopting one representation or the other, according to the best suitability for a particular application. These facts motivate the construction of circular edge triangles lying on Dupin cyclides and exhibiting the aforementioned properties. Our first contribution consists in an analytic method for the computation of Yvon-Villarceau circles on a given ring Dupin cyclide, by computing an adequate Dupin cyclide-torus inversion and applying it to the torus-based equations of Yvon-Villarceau circles. Our second contribution is an algorithm which, starting from three arbitrary 3D points, constructs a triangle on a ring torus such that each of its edges belongs to one of the three families of circles on a ring torus: meridian, parallel, and Yvon-Villarceau circles. Since the same task of constructing right triangles is far from being easy to accomplish when directly dealing with cyclides, our third contribution is an indirect algorithm which proceeds in two steps and relies on the previous one. As the image of a circle by a carefully chosen inversion is a circle, and by constructing different images of a right triangle on a ring torus, the indirect algorithm constructs a one-parameter family of 3D circular edge triangles lying on Dupin cyclides.
    DOI/handle
    http://dx.doi.org/10.1016/j.camwa.2014.10.020
    http://hdl.handle.net/10576/4633
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video