Show simple item record

AuthorAlkadour, Firas
AuthorAnagnostaki, Christina
AuthorTzaveas, Theodoros
AuthorOruganti, Anil Kumar
AuthorKara, Ali
Available date2023-08-27T05:58:07Z
Publication Date2023
Publication Name2nd International Conference on Civil Infrastructure and Construction
CitationAlkadour F., Anagnostaki C., Tzaveas T., Oruganti A.K. & Kara A., "Early Thermal Cracking Control in Concrete Structures in Qatar", The 2nd International Conference on Civil Infrastructure and Construction (CIC 2023), Doha, Qatar, 5-8 February 2023, DOI: https://doi.org/10.29117/cic.2023.0051
ISSN2958-3128
URIhttps://doi.org/10.29117/cic.2023.0051
URIhttp://hdl.handle.net/10576/46754
AbstractThermal cracks can occur in concrete elements at early stages during the hardening process. Also, the impact of thermal contraction and drying and autogenous shrinkage, may lead to excessive tensile strains and as a result cracks will occur. Consequently, an increase in reinforcements may be required to satisfy Early Thermal Cracking (ETC). ETC remains a major concern for concrete structures, especially for structures with high demand of water tightness. Considering the significance of water leaking in underground structures and the rising of the groundwater table in Qatar in the recent years, the Public Works Authority (ASHGHAL) has set the criteria to control early thermal cracks for Highway and Drainage Structures. This paper aims to present a comparison between the Early Thermal Cracking (ETC) codes and guidelines aiming towards providing sustainable and efficient design. This study compares the design method and parameters considered in BD 28/87, CIRIA C660 and CIRIA C766 currently used in Qatar for ETC calculations such as crack width permissible limit, minimum area of reinforcements, temperature change at early age, long term ambient temperature, autogenous shrinkage, drying shrinkage and restraint conditions. In addition, ETC calculations are carried out for a tunnel reinforced concrete box section with wall and top slab thicknesses ranging from 300mm to 1000mm. The least required area of reinforcements (As,req) for wall subject to edge restraint was by CIRIA C766 and for top slab subject to end restraint was by BD 28/87.
Languageen
PublisherQatar University Press
SubjectEarly Thermal Cracking
Underground Concrete Structures
CIRIA C766
CIRIA C660
BD 28/87
TitleEarly Thermal Cracking Control of Concrete Structures in Qatar
TypeConference Paper
Pagination373-381
ESSN2958-3136


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record