• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Conference Proceedings
  • International Conference on Civil Infrastructure and Construction (CIC 2023)
  • Theme 2: Advances in Infrastructure Sustainability, Renovation, and Monitoring
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Conference Proceedings
  • International Conference on Civil Infrastructure and Construction (CIC 2023)
  • Theme 2: Advances in Infrastructure Sustainability, Renovation, and Monitoring
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling Asphalt Pavement Frictional Properties using Different Machine Learning Algorithms

    Thumbnail
    View/Open
    075.pdf (390.2Kb)
    Date
    2023
    Author
    Khasawneh, Mohammad Ali
    Alsheyab, Mohammad Ahmad
    Al Akhrass, Haneen Issa
    Metadata
    Show full item record
    Abstract
    The objective of this work is to use some machine learning algorithms and test its efficiency in developing models to predict Locked Wheel Skid Trailer (LWST) values from Dynamic Friction Tester (DFT) and Circular Texture Meter (CTM) measurements conducted on asphalt pavement surfaces. For this prediction, three models were developed using DFT measurements at different speeds starting from 20km/h (12.5 mph) up to 64 km/h (40 mph) and then same DFT measurements as combination with Mean Profile Depth (MPD) and the last model used the International Friction Index (IFI) parameters (F60 and SP). The machine learning techniques includes two supervised learning algorithms: the Multi-Layer Perceptron (MLP) type of Artificial Neural Networks (ANN) and M5P tree model. In addition to one lazy algorithm called the K Nearest Neighbor (KNN) or Instance-Based Learner (IBL). The results showed that MLP models are the best in terms of the correlation coefficient that resulted in 81% prediction power using DFT parameters. Additionally, it was shown that the result of tree models was close to ANN but with much simpler regression. However, KNN models were recommended for LWST prediction of similar data characteristics and it is expected that this algorithm will be more efficient as the training data set becomes larger.
    URI
    https://doi.org/10.29117/cic.2023.0075
    DOI/handle
    http://hdl.handle.net/10576/46778
    Collections
    • Theme 2: Advances in Infrastructure Sustainability, Renovation, and Monitoring [‎68‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video