• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Earth Science Cluster
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Earth Science Cluster
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Seismic detection and characterization of a man-made karst analog - A feasibility study

    Thumbnail
    Date
    2021-03-19
    Author
    Gritto, Roland
    Elnaiem, Ali Elobaid
    Mohamed, Fateh Alrahman
    Sadooni, Fadhil
    Metadata
    Show full item record
    Abstract
    At the site of a water drainage shaft on the campus of Qatar University that serves as a man-made karst analog, two seismic imaging techniques were adapted to use resonant scattered waves recorded during active-source seismic surveys and during passive ambient-noise surveys. Data acquisition included two seismic transmission surveys that encompassed the shaft and a passive ambient-noise survey that extended across the top of the shaft. Seismic imaging of band-pass-filtered resonance waves correctly estimated the location and dimension of the shaft. Furthermore, the method detected the presence and the location of a horizontal drainage pipe and gravel bed connecting neighboring water shafts. Ambient-noise data were analyzed by computing amplitude values of the seismic records in spectral passbands. The results indicated an amplification of seismic amplitudes above the shaft for low-frequency passbands and a sharp decrease in amplitude values for high-frequency passbands. The high- and low-amplitude values displayed as a function of the receiver position allowed for accurate detection and location of the shaft in space. Ground truthing of the imaging results confirmed the accuracy of the seismic techniques, whereas numerical modeling supported the interpretation of the ambient-noise data. The techniques used do not require knowledge of the seismic velocities in the subsurface, but they depend on a priori information about the approximate location of the target.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85119457631&origin=inward
    DOI/handle
    http://dx.doi.org/10.1190/geo2020-0377.1
    http://hdl.handle.net/10576/47338
    Collections
    • Earth Science Cluster [‎216‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video